CAUSALITY BETWEEN EXPORT AND ECONOMIC GROWTH:
A CASE STUDY OF INDIA

Gurmeet Singh
Assistant Professor, United World School of Business, Uvarsad,
Gandhinagar, Gujarat.

ABSTRACT
The study investigates the relationships between export and economic growth, over the period April 2005 to March 2014. Index of industrial production is used as indicator of economic growth. Johansen’s co-integration and Granger causality test have been applied to explore the long-run & short run equilibrium relationship between export and economic growth. The analysis reveals that export and economic growth are co-integrated and, hence, a long-run equilibrium relationship exists between them. It is observed that the export and index of industrial production as indicator of economic growth are positively related to each other. The export is found to be significant in determining economic growth and economic growth significantly affects export. In the Granger causality sense, export granger causes economic growth and economic growth granger causes export or there is bi-directional causality between export and economic growth in both long run and short-run.

Key Words: Export, Economic Growth, Causality Test, Co-integration Test

INTRODUCTION
The outside exchange of India portrays relentless shortage since its commencement because of poor exchange execution. Fares were included low esteem included rural items. So as to build offer of produced merchandise India received Import substitution industrialization strategies amid 1950 - 1960. A few import substitution businesses are produced and shielded from outside rivalries. Local interest of outside products is, moved towards locally created ones. These strategies came about improvement of numerous essential and profitable modern units. The economy thus watches incredible development in 1960s. These internal arranged exchange arrangements effectively established framework of industrialization. Numerous creating economies, which received import substitution approaches amid, face drowsy financial execution and embraced fare advancement arrangements. A considerable lot of these economies fundamentally accomplished high financial development rate. India propelled by exceptional development these dynamic economies consented to change its economy in 1975s, however kept up its defensive approaches until late 1990. These defensive approaches slowly obliterate aggressively of household generation units i.e. nutritional categories and material.
Causality between Export and Economic Growth: A Case Study of India

Development of world exchange association (WTO) in 1995 and its amendment by dominant part of world economies changed the example of world exchange. India embraced fare drove development technique amid mid 2000s and opened its economy for universal rivalry without accomplishment of noteworthy intensity in any generation area. The economy as an outcomes watch noteworthy increment in exchange shortfall. The achievement of fare drove development methodology relies on upon level of specialization underway of products having near favorable position. Those economies, which intensely build up its creation side, watch critical monetary success. The defensive approaches brought about pulverization of intensity, which thus brought about noteworthy contortion of exchange and monetary development amid post liberalization period. The customary measure for genuine monetary action is the (GDP) or the gross national item (GNP). Then again, the information inaccessibility for these variables on a month to month premise confines numerous analysts to utilize IIP as a different option for consolidate the genuine yield. The ascent in mechanical creation flags the financial development (Maysami, Howe, & Hamaz, 2004). Also, it may illuminate more return assortment than GNP or GDP (Ratanapakorn & Sharma, 2007). Based on the above talk, the present study tries to examine the long run and short run relationship between the fare and financial development. Fare drove development speculation amended by numerous studies in India give generally bigger weight of monetary development to fares. This study researches climate fare cause development or development cause financial thriving in short and long run. This study will give approach to long run monetary flourishing of India.

The rest of this paper is, organized in following order; Section 2 presents review of literature. Section 3, presents data, methodology and results, whereas Section 4 concludes the study.

LITERATURE REVIEW

Fare drove development speculation is experimentally explored for determination of effect of fares on financial development. There are by and large two sorts of exact studies i.e. Cross-sectional studies, which focus fare affect on gathering on nations, and cross-country time arrangement studies, which separately explore fare sway monetary success of single nation. Lorde (2011) examines legitimacy of fare drove development speculation for Mexico, utilizing co-mix and Granger causality for the time of 1960-2003. The observationally result uncovers just short run causality from fare to development. In long run, he watches reverse causality running from financial development to fares. Safdari et al (2011) investigates causal relationship in the middle of fare and monetary development for 13 creating nations, for time of 1988-2008, utilizing board VECM. There result delineates unidirectional converse causality running from financial development to fares. Ullah et al., (2009) re-explored the fare drove development speculation utilizing time arrangement econometric methods over the time of 1970 to 2008 for Pakistan. The outcomes uncover that fare extension prompts monetary development. Pazim (2009) tried the legitimacy of fare drove development speculation in three nations by utilizing board information examination. Also, it is presumed that there exists no noteworthy relationship between the size on national pay and measure of fares for these nations on
Gurmeet Singh

the premise of restricted arbitrary impact model. The board unit root test demonstrates that the procedure for both GDP and fares at first look is not stationary, while the board co-mix test shows that there is no co-combination relationship between the fares and financial development for these nations. Rangasamy and Logan (2008) inspected the fares and monetary development relationship for South Africa, and give the proof that the unidirectional Granger causality keeps running from fares to financial development. Parida and Shahoo (2007) analyzes export driven development hypothesis for four creating nations of South Asia like India, Pakistan, Bangladesh and Sri Lanka, utilizing Pedroni’s board co-mix system. The outcomes adjusts legitimacy of fare drove development hypothesis. Cross-sectional studies accommodates blended conduct of fares on financial development.

Jordaan & Eita (2007) examined the causality in the middle of fares and GDP of Namibia for the period 1970 to 2005. The fare drove development theory is tried through Granger causality and co-coordination models. It tests whether there is unidirectional or bi-directional causality in the middle of fares and GDP. The outcomes uncovered that fares Granger-cause GDP and GDP per capita, and proposed that the fare drove development methodology through different motivating forces has a positive impact on development. Tang (2006) stated that there is no long-run relationship among exports, real Gross Domestic Product, and imports. This study further shows no short- and long-run causality between export expansion and economic growth in China on the basis of Granger causality test while economic growth does Granger-cause imports in the short-run. Mah (2005) studied the long-run causality between exports and economic growth for China with the help of the significance of error correction term. This study indicates that export expansion is insufficient to explain the patterns of real economic growth.

Shirazi et al (2004) concentrated on the short-run and long-run relationship among genuine fares, genuine imports, and monetary development on the premise of co-combination and multivariate Granger causality test as grew by Toda and Yamamoto (1995) for the period 1960 to 2003. This study demonstrated a long-run relationship among imports, sends out, and financial development and discovered unidirectional causality from fares to yield. Yet, it didn’t locate any huge causality in the middle of imports and fares. Lin & Yo-Long (2003) expressed that 10 for each penny increment in fares cause 1 for every penny increment in GDP in the 1990s in China on the premise of new proposed estimation technique, when both immediate and roundabout commitments are considered.

Subasat (2002) researched the experimental linkages in the middle of fares and financial development. The study proposed that the more fare arranged nations like center wage nations become speedier than the generally less fare situated nations. The study further demonstrated that fare advancement does not have any noteworthy effect on monetary development for low and high salary nations. Vohra (2001) demonstrated the relationship between the fares and financial development in India, Pakistan, Philippines, Malaysia, and Thailand for the period 1973 to 1993. The exact results demonstrated that when a nation has accomplished some level of monetary improvement then the fares have a positive and huge effect on financial development.

The study additionally demonstrated the significance of liberal business arrangements by seeking after fare development methodologies, and by drawing in remote ventures. Ekanayake (1999) investigates causal relationship in the middle of fare and monetary development in eight Asian creating nations, utilizing yearly time arrangement information of 1960-1997. Results accommodate legitimacy of fare drove development speculation for all nations with the exception of Malaysia. Erfani (1999) inspected the causal relationship between financial execution and fares over the time of 1965 to 1995 for a few creating nations in Asia and Latin America. The outcomes demonstrated the huge positive relationship in the middle of fares and financial development. This study gives the proof of fare drove development hypothesis.

Ukpolo (1998) utilizes Granger causality test to focus the relationship in the middle of fares and monetary development in South Africa for the time of 1964-1993. The outcomes neglect to accept fare drove development as opposite causality is watched. Thornton (1997) analyzes legitimacy of fare drove development for six European nations, from mid 19th century to 1913, utilizing cointegration and granger causality. The outcomes show blended conduct: Unidirectional running from fare to GDP in Italy, Norway, and Sweden, Causality running from GNP to Exports in UK, while bidirectional causality is, see in Denmark and Germany. Kim (1993) has inspected the real patterns of key macroeconomic variables in South Korea and Chile and connected them to fare execution. Kim recognized fares as a noteworthy wellspring of monetary development and gave the confirmation of the legitimacy of the case that an open and exchange arranged economy is not just the best ensure for long haul financial development, however it helps the introductory effects of outer stuns. Kim, further, specified that there are components other than exchange which increment monetary development. Darrat (1986) took a shot at four Asian nations, (Hong Kong, South Korea, Singapore, and Taiwan) and discovered no confirmation of unidirectional causality from fares to financial development in all the four economies. On account of Taiwan, nonetheless, the study identified unidirectional causality from financial development to fare development.

The investigation of the progress of the connection between development of fares and financial development has been tended to by various explores in the setting of India. (Dash, 2009) investigates the causal relationship between development of fares and financial development in India for the post-liberalization period 1992-2007, and the outcomes demonstrate that
there exists a long-run relationship in the middle of yield and fares, and it is unidirectional, running from development of fares to yield development. Raju et al (2005) dissected the relationship in the middle of fares and monetary development in India over the preliberalization period 1960-1992, and discovered solid backing for unidirectional causality from fares to financial development utilizing Granger causality relapses in view of stationary variables, with and without a slip remedy term. Sharma and Panagiotidis (2005) test the fare drove development speculation in the connection of India, and the outcomes fortify the contentions against the fare drove development theory for the instance of India.

Chandra (2002) discovered bi-directional causal relationship between development of fares and GDP development which is a short-run causal connection, as co-incorporation between development of fares and GDP development was not found. Kemal et al (2002) discovers a positive relationship in the middle of fares and financial development for India and also for different economies of South Asia. Anwar and Nidugala (2001) found that fares had a critical part in affecting GDP development in the 1980s. Dhawan and Biswal (1999) look at the same issue for the period 1961 to 1993, and find that development in GDP causes development in fares while causality from fares to GDP gives off an impression of being a short run wonder. Ghatak et al (1997) reasoned that development of fares is created by yield development in India. Bhat (1995) reevaluates the fares financial development nexus for India, and discovers proof of bi-directional causality between development of fares and monetary development. Sharma and Dhakal (1994) offer some proof of the fare drove development theory for India, yet the experimental confirmation offered by it is inconsistent. The study reasons that the salary and fare arrangement for India are non-stationary utilizing the Phillip-Perron test. It tests for causality, yet does not test for co-reconciliation. Be that as it may, the right utilization of Granger tests requires the ID of a conceivable co-incorporating relationship. Nandi and Biswas (1991) discovered the proof of unidirectional causality from development of fares to financial development. This study does not test for stationarity and behavior Sims causality test on the levels of the wage and fare variables. Given that the levels of the wage and fare variables are typically non-stationary, the outcomes are untrustworthy.

Based on the above discussion, the present study tries to investigate the long run and short run relationship between the export and economic growth by considering the following model:

\[X_t = (\text{EXPORT}_t, \text{IIP}_t)' \]

Where, EXPORT is the monthly export data in Rs. billion, IIP is industrial production index, and X is a 2×1 vector of variables.

DATA & METHODOLOGY

The aim of this paper is to investigate the relationship between the export and economic growth. To accomplish the research objective monthly data ranging from April 2005 to March 2014 are obtained which comprises 108 data points for the analysis. The choice of study period is based on the availability of data series. Descriptions of variables and data sources are presented in Table 1. All variables are converted into natural logarithmic form.
Causality between Export and Economic Growth: A Case Study of India

Table 1: Description of Variables

<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Construction of Variable</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPORT</td>
<td>Natural Logarithm of the Export (Rs. Billion)</td>
<td>RBI Website</td>
</tr>
<tr>
<td>IIP</td>
<td>Natural Logarithm of the Index of Industrial Production</td>
<td>RBI Website</td>
</tr>
</tbody>
</table>

The present study employs the time series data analysis technique to study the relationship between the export and economic growth. In a time series analysis, the results might provide a spurious if the data series are non-stationary. Thus, the data series must obey the time series properties i.e. the time series data should be stationary, meaning that, the mean and variance should be constant over time and the value of covariance between two time periods depends only on the distance between the two time period and not the actual time at which the covariance is computed. The most popular and widely used test for stationary is the unit root test. The presence of unit root indicates that the data series is non-stationary. The standard procedures of unit root test namely the Augmented Dickey Fuller (ADF) (1979; 1981) is performed to check the stationary nature of the series. Assuming that the series follows an AR (p) process the ADF test makes a parametric correction and controls for the higher order correlation by adding the lagged difference terms of the dependent variable to the right hand side of the regression equation. In the ADF test null hypothesis is that data set being tested has unit root. This provides a robustness check for stationary. The unit root tests also provide the order of integration of the time series variables. In a multivariate context if the variable under consideration are found to be I (1) (i.e. they are non-stationary at level but stationary at first difference), but the linear combination of the integrated variables is I (0), then the variables are said to be co-integrated (Enders, 2004). The Augmented Dickey Fuller (ADF) (1979; 1981) is performed to check the stationary nature of the series. The complete model with deterministic terms such as intercepts and trends is shown in equation (1).

$$\Delta Y_t = \alpha + \pi + \sum_{i=1}^{m} \delta Y_{t-i} \Delta \beta_i + Y_{t-1} + \varepsilon_t$$

Lag length for VAR system is, selected based on minimum sequential modified LR test statistic (each test at 5% level) (LR), Final Prediction Error (FPE), Akaike Information Criterion (AIC), Schwarz Information Criterion (SC) and Hannan-Quinn Information Criterion (HQ). The estimation of co-integration using this method, involves estimation of following unrestricted VAR model

$$Y_t = A_0 + \sum_{i=1}^{n} A_i Y_{t-i} + \varepsilon_t$$

Where: Yt is n × 1 vector of non stationary I (1) variables, Ao is an n × 1 vector of constants, n is no of lags. Ai is an n × n matrix of estimated parameters. Yt is n × 1 vector independent error term. With the non-stationary series, co-integration analysis has been used to examine whether there is any long run relationship exists. However, a necessary condition for the use of co-
Gurmeet Singh

integration technique is that the variable under consideration must be integrated in the same order and the linear combinations of the integrated variables are free from unit root. According to Engel and Granger (1987), if the variables are found to be co-integrated, they would not drift apart over time and the long run combination amongst the non-stationary variables can be established. To conduct the co-integration test, the Engel and Granger (1987) or the Johansen and Juselius (1990) or the Johansen (1991) approach can be used. The Engel-Granger two step approaches can only deal with one linear combination of variables that is stationary. In a multivariate practice, however, more than one stable linear combination may exist. The Johansen’s co-integration method is regarded as full information maximum likelihood method that allows for testing co-integration in a whole system of equations.

The Johansen methods of co-integration can be written as the following vector autoregressive framework of order p.

$$X_t = A_0 + \sum_{j=1}^{p} B_j X_{t-i} + \varepsilon_t$$ \hspace{1cm} (4)

Where, X_t is an $n \times 1$ vector of non stationary I(1) variables, A_0 is an $n \times 1$ vector of constants, p is the maximum lag length, B_j is an $n \times n$ matrix of coefficient and et is a $n \times 1$ vector of white noise terms. The number of characteristic roots can be tested by considering the following trace statistic and the maximum eigenvalue test.

$$\lambda_{\text{trace}}(r) = -T \sum_{i=j+1}^{p} \ln (1 - \hat{\lambda}_j)$$ \hspace{1cm} (5)

$$\lambda_{\text{max}}(r, r + 1) = -T \ln (1 - \hat{\lambda}_j)$$ \hspace{1cm} (6)

Where, r is the number of co-integrating vectors under the null hypothesis, T is the number of usable observations and $\hat{\lambda}_j$ is the estimated value for the j^{th} ordered characteristic roots or the eigenvalue from the Λ matrix.

A significantly non-zero eigenvalue indicates a significant co-integrating vector. The trace statistics is a joint test where the null hypothesis is that the number of co-integration vectors is less than or equal to r against an unspecified general alternative that there are more than r. Whereas, the maximum eigenvalue statistics test the null hypothesis that the number of co-integrating vectors is less than or equal to r against the alternative of $r+1$ (Enders, 2004) (Brooks, 2002).

At the end, the Granger Causality test (Engel & Granger, 1987) has been used to find out the direction of causality between the variables. To test for Granger Causality, the following bivariate regression model can be used:

$$\gamma_t = \alpha_0 + \sum_{i=1}^{m} \alpha_i \gamma_{t-i} + \sum_{j=1}^{n} \beta_j X_{t-j} + \varepsilon_t$$ \hspace{1cm} (9)
Causality between Export and Economic Growth: A Case Study of India

\[x_t = \omega_0 + \sum_{i=1}^m \gamma_i Y_{t-i} + \sum_{j=1}^n \theta_j X_{t-j} + \epsilon_t \]

(10)

If all the coefficients of \(x \) in the first regression equation of \(y \), i.e. \(\beta_i \) for \(i = 1 \ldots l \) are significant, then the null hypothesis that \(x \) does not cause \(y \) is rejected.

EMPIRICAL ANALYSIS

The descriptive statistics for all the variables under study, namely, export and index of industrial production as indicator of economic growth are presented in Table 2. The value of skewness and kurtosis indicate the lack of symmetric in the distribution. Generally, if the value of skewness and kurtosis are 0 and 3 respectively, the observed distribution is said to be normally distributed. Furthermore, if the skewness coefficient is in excess of unity it is considered fairly extreme and the low (high) kurtosis value indicates extreme platykurtic (extreme leptokurtic). From the table it is observed that the frequency distributions of underlying variables are not normal. The significant coefficient of Jarque-Bera statistics also indicates that the frequency distributions of considered series are not normal. The value of standard deviation indicates that the export is relatively more volatile as compare to IIP.

Table 2: Descriptive Statistics of Variables

<table>
<thead>
<tr>
<th></th>
<th>LNEXPORT</th>
<th>LNIIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.668227</td>
<td>4.998349</td>
</tr>
<tr>
<td>Median</td>
<td>6.620861</td>
<td>5.030433</td>
</tr>
<tr>
<td>Maximum</td>
<td>7.491668</td>
<td>5.268889</td>
</tr>
<tr>
<td>Minimum</td>
<td>5.78748</td>
<td>4.596129</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.481634</td>
<td>0.165739</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.008158</td>
<td>-0.744918</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.797241</td>
<td>2.7166</td>
</tr>
<tr>
<td>Jarque-Bera</td>
<td>6.511032</td>
<td>10.34966</td>
</tr>
<tr>
<td>Probability</td>
<td>0.038561</td>
<td>0.005657</td>
</tr>
<tr>
<td>Sum</td>
<td>720.1685</td>
<td>539.8217</td>
</tr>
<tr>
<td>Sum Sq. Dev.</td>
<td>24.82091</td>
<td>2.939245</td>
</tr>
<tr>
<td>Observations</td>
<td>108</td>
<td>108</td>
</tr>
</tbody>
</table>

Source: Author’s Estimation

To check the stationarity of the underlying data series, we follow the standard procedure of unit root testing by employing the Augmented Dickey Fuller (ADF) test. The results are presented in Table 3. On the basis of the ADF test, all the series are found to be non-stationary at level with intercept. However, after taking the first difference these series are found to be stationary at 1, 5 and 10 percent level. Thus the stationary test indicates that all series are individually integrated of the order 1 (1).
Table 3: Result of Augmented Dickey-Fuller Unit Root Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Trend</th>
<th>Trend & Intercept</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t-Statistic</td>
<td>Prob.*</td>
<td>t-Statistic</td>
</tr>
<tr>
<td>D(LNEXPORT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test statistic</td>
<td>-5.8963</td>
<td>0</td>
<td>-5.8676</td>
</tr>
<tr>
<td>Test critical values:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% level</td>
<td>-3.4957</td>
<td>-4.0505</td>
<td>-2.5874</td>
</tr>
<tr>
<td>5% level</td>
<td>-2.89</td>
<td>-3.4545</td>
<td>-1.9439</td>
</tr>
<tr>
<td>10% level</td>
<td>-2.582</td>
<td>-3.1529</td>
<td>-1.6147</td>
</tr>
<tr>
<td>D(LNIIP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test statistic</td>
<td>-3.0293</td>
<td>0.0368</td>
<td>-19.2725</td>
</tr>
<tr>
<td>Test critical values:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% level</td>
<td>-3.5216</td>
<td>-4.0696</td>
<td>-2.5966</td>
</tr>
<tr>
<td>5% level</td>
<td>-2.9012</td>
<td>-3.4635</td>
<td>-1.9453</td>
</tr>
<tr>
<td>10% level</td>
<td>-2.588</td>
<td>-3.1582</td>
<td>-1.6139</td>
</tr>
</tbody>
</table>

Source: Author’s Estimation

The presence and the number of co-integrating relationships among the underlying variables are tested through the Johansen procedure i.e., Johansen and Juselius (1990) and Johansen (1991). Specifically, trace statistic and the maximum eigenvalue are used to test for the number of co-integrating vectors. The result of VAR lag order selection criteria are presented in the Table 4. Lag order selected for the study is based on LR, FPE, AIC and HQ criterion. The results of both trace statistics and the maximum eigenvalue test statistics are presented in Table 5. The trace statistic indicates two co-integrating equations and the maximum eigenvalue statistics identify no co-integrating equations. The results show that a long-run equilibrium relationship exists between the export and economic growth.

Table 4: VAR Lag Order Selection Criteria

<table>
<thead>
<tr>
<th>Lag</th>
<th>LogL</th>
<th>LR</th>
<th>FPE</th>
<th>AIC</th>
<th>SC</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80.0824</td>
<td>NA</td>
<td>7.19E-04</td>
<td>-1.561765</td>
<td>-1.509661</td>
<td>-1.540678</td>
</tr>
<tr>
<td>1</td>
<td>264.3717</td>
<td>357.5099</td>
<td>1.95E-05</td>
<td>-5.167434</td>
<td>-5.011124</td>
<td>-5.104173</td>
</tr>
<tr>
<td>3</td>
<td>295.2084</td>
<td>18.70831</td>
<td>1.24E-05</td>
<td>-5.624167</td>
<td>-5.259443*</td>
<td>-5.476557</td>
</tr>
<tr>
<td>4</td>
<td>302.4899</td>
<td>13.25247*</td>
<td>1.16E-05*</td>
<td>-5.689799*</td>
<td>-5.220868</td>
<td>-5.500014*</td>
</tr>
<tr>
<td>5</td>
<td>304.2307</td>
<td>3.098513</td>
<td>1.21E-05</td>
<td>-5.644613</td>
<td>-5.071476</td>
<td>-5.412654</td>
</tr>
<tr>
<td>6</td>
<td>308.7351</td>
<td>7.837706</td>
<td>1.20E-05</td>
<td>-5.654702</td>
<td>-4.977358</td>
<td>-5.380569</td>
</tr>
<tr>
<td>7</td>
<td>311.2294</td>
<td>4.240276</td>
<td>1.24E-05</td>
<td>-5.624588</td>
<td>-4.843037</td>
<td>-5.30828</td>
</tr>
<tr>
<td>8</td>
<td>316.1319</td>
<td>8.138234</td>
<td>1.22E-05</td>
<td>-5.642639</td>
<td>-4.756881</td>
<td>-5.284156</td>
</tr>
</tbody>
</table>

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
Causality between Export and Economic Growth: A Case Study of India

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion
Source: Author’s Estimation

Table 5: Result of Johansen’s Co-integration Test

<table>
<thead>
<tr>
<th>Hypothesized No. of CE(s)</th>
<th>Eigen value</th>
<th>Trace Statistic</th>
<th>0.05 Critical Value</th>
<th>Prob.**</th>
<th>Max-Eigen Statistic</th>
<th>0.05 Critical Value</th>
<th>Prob.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>None *</td>
<td>0.11498</td>
<td>20.72623</td>
<td>18.39771</td>
<td>0.0232</td>
<td>12.58088</td>
<td>17.14769</td>
<td>0.2046</td>
</tr>
<tr>
<td>At most 1 *</td>
<td>0.07604</td>
<td>8.14535</td>
<td>3.841466</td>
<td>0.0043</td>
<td>8.14535</td>
<td>3.841466</td>
<td>0.0043</td>
</tr>
</tbody>
</table>

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level
Max-eigenvalue test indicates no cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values
Source: Author’s Estimation

The co-integration results indicate that causality exists between the co-integrated variables but it fails to show us the direction of the causal relationship. The pair-wise Granger Causality test (1987) is performed between all possible pairs of variables to determine the direction of causality. The rejected hypotheses are reported in Table 6. The results show that there is bidirectional causality exists between export and economic growth.

Table 6: Result of Granger Causality Test

<table>
<thead>
<tr>
<th>Null Hypothesis:</th>
<th>Obs</th>
<th>F-Statistic</th>
<th>Prob.</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNIIP does not Granger Cause LNEXPORT</td>
<td>104</td>
<td>2.63721</td>
<td>0.0387</td>
<td>Reject</td>
</tr>
<tr>
<td>LNEXPORT does not Granger Cause LNIIP</td>
<td></td>
<td>3.01378</td>
<td>0.0218</td>
<td>Reject</td>
</tr>
</tbody>
</table>

Source: Author’s Estimation

CONCLUSION

This study examined the inter-linkage between the Indian export and economic growth using Johansen’s co-integration test and Granger causality test framework. The analysis used monthly data over the period April 2005 to March 2014 which is obtained from RBI website. The index of industrial production is used to represent the economic growth. It is believed that, the selected macroeconomic variables namely index of industrial production, among others; represent the state of the economy.

To conclude, the analysis revealed that the index of industrial production represented as economic growth in study formed significant long-run relationship with export. The Johansen’s co-integration test suggests that the export and economic growth are co-integrated with each other. It is observed that in the long-run, export and index of industrial production as indicator of economic growth are positively related to each other. The export is found to be significant in determining economic growth and economic growth significantly affects export.
The findings from Granger causality test indicate a bi-directional causality between export and economic growth. Export granger causes economic growth and economic growth granger causes export in both long run and short-run.

The present study confirms the beliefs that export continue to affect the economic growth. However, the limitations of the study should not be over looked. The present study is limited to only two selected macroeconomic variables. Inclusion of more variables with a longer time period may explain the research objective in better way. A logical extension of the study can be done by including more variables and analyzing it.

BIBLIOGRAPHY

Causality between Export and Economic Growth: A Case Study of India